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Abstract

It has been known that the Kirchhoff stress tensor s and Hencky�s logarithmic strain tensor h may be useful in for-

mulations of isotropic finite elasticity and elastoplasticity. In this work, a straightforward proof is presented to dem-

onstrate that, for an isotropic hyperelastic solid, the just-mentioned stress–strain pair s and h are derivable from two dual

scalar potentials with respect to each other. These results establish a simple, explicit dual formulation of isotropic finite

hyperelasticity. As a result, they supply a complete solution to the problem of finding out the inverted stress–strain

relation for isotropic hyperelastic solids, raised by J.A. Blume [Int. J. Non-linear Mech. 27 (1992) 413]. Moreover, an

explicit form of such an inverted hyperelastic stress–strain relation is derived in terms of the powers I , s and s2.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Usually, an isotropic elastic solid undergoing finite deformations is defined by a stress–strain relation

that prescribes the dependence of a stress measure T on a strain measure E, i.e.,

T ¼ bTT ðEÞ:
For a hyperelastic solid, certain restrictions concerning the specific stress power should be imposed. As a

result, the stress–strain relation for isotropic finite hyperelastic solids can be derived from an isotropic

scalar potential known as the strain-energy function.
On the other hand, an isotropic elastic solid may be equally well defined by an inverted stress–strain

relation, i.e., a strain–stress relation, which gives the dependence of a strain measure E on a stress measure

T, i.e.,
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E ¼ bEEðTÞ:
Because of the foregoing restrictions, the strain–stress relation for isotropic hyperelastic solids should also

be derived from a scalar potential.

In continuum mechanics, there are a great many stress and strain measures for consideration. In for-

mulating an elastic relation, the stress measure T and the strain measure E may be freely chosen among
them in principle. The Cauchy stress tensor r and the Cauchy–Green tensor B ¼ FFT and the stretch tensor

V ¼
ffiffiffiffiffiffiffiffiffi
FFT

p
are commonly used in literature. With the pair ðr;BÞ or ðr;VÞ, the explicit stress–strain relation

r ¼ r̂rðBÞ for isotropic hyperelastic solids in terms of the strain-energy function is well-known (see, e.g.,

Truesdell and Noll, 1965; Gurtin, 1981; Ogden, 1984). It may be clear that the form of a hyperelastic stress

response function bTT ðEÞ or a hyperelastic strain response function bEEðTÞ relies on the choice of the stress–

strain pair ðT;EÞ. Generally, for a stress–strain pair ðT;EÞ that need not be work-conjugate, the explicit

form of the hyperelastic stress–strain relation T ¼ bTT ðEÞ may not be so clear or so simple. In particular, for

a chosen stress measure T, a given form of stress response function bTT ðEÞ may not be well-defined in the

sense of hyperelasticity for every strain measure E. Most recently, Chiskis and Parnes (2000) have studied
an interesting particular example in this respect. Let the stress measure T be the Cauchy stress r, i.e., T ¼ r,

and let the strain measure E to be determined. They consider a Hookean type elastic relation linear in E,
i.e.,

r ¼ KðtrEÞI þ 2GE; ð1Þ
where K and G are the Lam�ee elastic constants evaluated at small deformations. They demonstrate that the

elastic relation (1) is hyperelastic if and only if E is of the form

E ¼ K
2G

V ð2G=KÞ�
� I
�
:

The latter requires that E be dependent on the Lam�ee elastic constants K and G. It does not appear that such
an E qualifies as a strain measure in a pure kinematic sense, since it specifies different straining states for the

same deformation of material bodies with different Lam�ee constants.

In a paper, Blume (1992) raised and investigated the problem of finding out an explicit representation for

the strain–stress relation 1 B ¼ bBBðrÞ for isotropic hyperelastic solids. She derived conditions on the form of

such an inverted hyperelastic constitutive relation, and, in the incompressible case, achieved an explicit

general representation for a hyperelastic strain–stress relation in terms of a generating scalar potential.

However, it appears that no explicit results have been derived for the general compressible case. Moreover,

Blume (1992) noted that, even for a simple incompressible case, it appears to be difficult to derive an explicit
form of the hyperelastic strain–stress relation in terms of the powers rr with r ¼ 0, 1, 2.

The known stress measure closest to the Cauchy stress (true stress) r is the Kirchhoff stress s ¼ Jr, also

known as the weighted Cauchy stress. We shall show that, if we replace the Cauchy stress r with the

Kirchhoff stress s ¼ Jr in the aforementioned issues raised by Chiskis and Parnes (2000) and Blume (1992),

respectively, then simple, complete solutions for them would be possible. With the replacement of the

Cauchy stress r by the Kirchhoff stress s ¼ Jr, Eq. (1) becomes

s ¼ Jr ¼ KðtrEÞI þ 2GE: ð2Þ
Then arises the question as to what strain measure makes the above Hookean type elastic relation hy-

perelastic. Moreover, replacing the Cauchy stress r by the Kirchhoff stress s ¼ Jr, we may reformulate the

foregoing Blume�s problem as follows. Let B ¼ BðsÞ be an isotropic hyperelastic strain–stress relation. Find

1 Note that the Cauchy–Green strain tensor G used in Blume (1992) is replaced here by B and that the symbol s for the Cauchy

stress therein is changed to r here. In this article the symbol s is used to designate the Kirchhoff stress, as will be indicated.
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a general explicit expression for the strain response function BðsÞ in terms of a free scalar potentialeRR ¼ RðsÞ. Note that the Kirchhoff stress s is just the Cauchy stress scaled by the Jacobian (volume ratio)

J ¼ detF. They differ only by a scalar factor J . Since the stress power is just the inner product of the

Kirchhoff stress s and the stretching D and since the notion of hyperelasticity is concerned directly with the
stress power, it may be expected that the Kirchhoff stress s should be more pertinent than the Cauchy stress

r in finite hyperelastic formulation.

In this work, we shall show that, with the Kirchhoff stress tensor s and Hencky�s logarithmic strain

measure h (see Eqs. (3) and (4) below) we may arrive at a simple, explicit dual formulation of stress–strain

and strain–stress relations for isotropic finite hyperelasticity. We demonstrate in a straightforward manner

that, for an isotropic hyperelastic solid, the foregoing stress–strain pair s and h are derivable from two dual

scalar potentials with respect to each other. These results supply a complete solution to the foregoing

problem raised by Blume (1992). In particular, with reference to the foregoing issue treated by Chiskis
and Parnes (2000), we show that the linear stress–strain relation between the Kirchhoff stress and Hencky

strain is hyperelastic for any given Lam�ee constants. Moreover, using the eigenprojection method based on

Sylvester�s formula, we derive an explicit form of the hyperelastic strain–stress relation in terms of the

three powers sr with r ¼ 0, 1, 2.

Usefulness of the inverted stress–strain relation for hyperelastic solids has been pointed out by Blume

(1992); refer to the relevant references therein. In addition, in recent years, a hyperelastic strain–stress

relation in terms of the Hencky strain and Kirchhoff stress has been found essential to formulations of finite

inelasticity theories (see, e.g., Bruhns et al., 1999, 2001b; Xiao et al., 1997a,b, 1999, 2000). Generally, Hill
(1968, 1970, 1978) found that Hencky�s logarithmic strain measure has inherent advantages over other

strain measures in his study of a priori constitutive inequalities 2 and treated the Hencky strain, its rate and

its work-conjugate stress as basic measures for strain, strain rates and stresses, etc. Recently, certain sig-

nificant properties of the Hencky strain or natural strain have been indicated by Freed (1995), Ba�zzant
(1998), and Xiao et al. (1997b). Now, the Hencky strain has found applications in finite elasticity and

inelasticity; refer to, e.g., the relevant references mentioned above, as well as de Boer (1967), de Boer and

Bruhns (1969), Bruhns and Thermann (1969), Bruhns (1970, 1971), St€ooren and Rice (1975), Raniecki

and Nguyen (1984), Eterovic and Bathe (1990), Weber and Anand (1990), Miehe et al. (1994), Stumpf and
Schieck (1994), Schieck and Stumpf (1995), Bonet and Wood (1997), Kollmann and Sansour (1997), Miehe

(1998), and many others.

2. Dual stress–strain and strain–stress relations

Let s be the Kirchhoff stress tensor and h Hencky�s logarithmic strain tensor. 3 The former is simply the

Cauchy stress multiplied by the volume ratio J , and the latter is the natural logarithm of the left stretch
tensor V . Namely, 4

s ¼ Jr; J ¼ detF; ð3Þ

2 In this respect, refer to Ogden (1970) for a further study.
3 According to literature, the logarithmic strain measure, also called natural strain, is named after Hencky. However, it was

introduced earlier by several researchers, including Imbert (1880) and Ludwik et al. (1909) (see, e.g., Truesdell and Noll, 1965; Curnier

and Rakotomanana, 1991). Later Hencky (1928, 1931, 1933) independently introduced it and used it to study elastic behaviour of

rubbers etc. at some simple finite deformation modes.
4 A general class of finite strain measures including the Hencky strain h was introduced by Hill (1968, 1970, 1978). A coherent,

comprehensive treatment for them can be found in Ogden (1984).
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h ¼ lnV ¼ 1

2
lnB ¼

X3
i¼1

ðln kiÞni � ni: ð4Þ

Here and henceforward, F is the deformation gradient, V ¼
ffiffiffiffiffiffiffiffiffi
FFT

p
as before, and ki and ni are the three

eigenvalues of V and the corresponding subordinate orthonormal eigenvectors of V . The latter obey the
orthonormalization condition

ni � nj ¼ dij; i; j ¼ 1; 2; 3: ð5Þ

The constitutive equations for isotropic elastic materials can be defined by a tensor function relation
between a stress measure T and a strain measure E, as indicated before. In particular, we have

s ¼ UðhÞ ð6Þ

satisfying the following isotropy condition:

UðQhQTÞ ¼ QUðhÞQT ð7Þ

for every orthogonal tensor Q. According to Rivlin–Ericksen representation theorem derived from Cayley–

Hamilton theorem (see, e.g., Truesdell and Noll, 1965), we have

s ¼ UðhÞ ¼ aI þ bhþ ch2; ð8Þ

where a; b and c are symmetric functions of the three eigenvalues hi ¼ ln ki of h.
For the stretching D holds the following important fact (see, e.g., Hill, 1978; Ogden, 1984),

ni �Dni ¼
_kki

ki
ðno summationÞ: ð9Þ

Here and henceforth, the symbol _ð Þð Þ with a superposed dot is used to represent the material time derivative.
For any given non-negative integer r, we have

hr ¼
X3
i¼1

lnr kð Þni � ni: ð10Þ

The material time derivative of the Hencky strain tensor h given by Eq. (4) is of the form:

_hh ¼
X3
i¼1

_kki

ki
ni

 
� ni þ ln kiðni � _nni þ _nni � niÞ

!
: ð11Þ

Since ni � ni ¼ 1 (no summation), we have

ni � _nni ¼ 0 ðno summationÞ: ð12Þ

Hence, with Eqs. (5) and (10)–(12) we deduce 5

trðhrDÞ ¼ trðhr _hhÞ ð13Þ

for any given non-negative integer r. Then, the identity (13) and the representation formula (8) together

produce the stress power _ww per unit reference volume as follows:

_ww ¼ trðsDÞ ¼ trðs _hhÞ ð14Þ

for an isotropic elastic material.

5 Throughout, the notation trA with a 2nd-order tensor A is used to represent the trace of A, i.e., trA ¼ Aii.
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According to the definition of hyperelasticity or Green elasticity, there is an isotropic scalar potential 6

R ¼ bRRðhÞ ð15Þ

with bRRðQhQTÞ ¼ bRRðhÞ

for every proper orthogonal tensor Q, known as strain energy function, such that the material time de-

rivative _RR supplies the stress power _ww per unit reference volume, i.e.,

_RR ¼ trðsDÞ: ð16Þ

From Eqs. (14)–(16) it may become clear that an isotropic elastic material is hyperelastic if and only if the

Kirchhoff stress s is derivable from the isotropic scalar potential R ¼ bRRðhÞ with respect to the Hencky strain
h, i.e.,

s ¼ oR
oh

: ð17Þ

On the other hand, if either we assume that the scalar potential R ¼ bRRðhÞ is twice continuously differen-

tiable and that the Hessian ðo2R=ohohÞ is non-singular, or we assume that R ¼ bRRðhÞ is continuously dif-

ferentiable and very strictly convex (see, e.g., Definition 16.2.7, �SSilhav�yy, 1997), then (17) is invertable to

yield the inverted relation

h ¼ ĥhðsÞ ð18Þ

and, therefore, we may define the Legendre transformation eRR of R as follows:eRR ¼ RðsÞ ¼ trðsĥhðsÞÞ � bRRðĥhðsÞÞ: ð19Þ

We refer to eRR as the complementary potential. It is also twice continuously differentiable or continuously

differentiable (see, e.g., �SSilhav�yy, 1997, Proposition 10.1.3 and Corollary 16.4.7).

The potential R and R form a dual or conjugate relation. Indeed, we have

RðsÞ þ bRRðhÞ ¼ trðshÞ ð20Þ

and, besides, we have (17) and

h ¼ oeRR
os

: ð21Þ

The latter indicates that, for an isotropic hyperelastic material, the Hencky strain h is derivable from the

complementary potential eRR with respect to the Kirchhoff stress s.

By the above analysis we have established explicit dual formulations of stress–strain and strain–stress

relations for isotropic hyperelastic materials in terms of the potential R ¼ bRRðhÞ and the complementary
potential eRR ¼ RðsÞ which are related to each other through the Legendre relation (20). The hyperelastic

stress–strain relation (17) was known to Hill (1968, 1970, 1978). A detailed proof was given latter by

Fitzjerald (1980) and Hoger (1987). Most recently, a novel, concise proof has been presented by Sansour

(2001). The dual formulation formed by Eqs. (17) and (21) was established by Bruhns et al. (1999) and Xiao

et al. (2000) by applying the integrability theorem derived in Xiao et al. (1997a). As has been shown above,

here these results may be established by means of a more straightforward procedure.

6 Note that this potential may be formulated as an isotropic scalar function of any chosen strain measure.
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The strain–stress relation (21) is expressible as another useful form. In fact, substituting Eq. (21) into the

identity

B ¼ V2 ¼ e2h; ð22Þ
we obtain

B ¼ e2ðo
~RR=osÞ: ð23Þ

In the above, eA is used to designate the exponential function of symmetric second order tensor A.
For an incompressible material, we have J ¼ 1. In this case, the Kirchhoff stress s coincides with the

Cauchy stress r. Thus, Eq. (23) provides the solution derived by Blume (1992) for incompressible materials.

It may be interesting to observe that Blume�s solution (cf. Eq. (3.10) in Blume, 1992) for the incompressible

case yields the general solution (23) simply by replacing the potential C and the Cauchy stress therein with

the complementary potential eRR and the Kirchhoff stress s here.
On the other hand, we consider the issue concerning what strain measure E makes the Hookean type

relation (2) hyperelastic. With the quadratic strain-energy function

R ¼ 1
2
KðtrhÞ2 þ Gðtrh2Þ; ð24Þ

the general hyperelastic stress–strain relation (17) yields the following linear relation between the Kirchhoff

stress s and Hencky strain measure h:

s ¼ Jr ¼ KðtrhÞI þ 2Gh: ð25Þ
As the simplest case of the general hyperelastic relation (17), the above linear stress–strain relation is hy-

perelastic for any given Lam�ee elastic constants K and G. Unlike the solution given by Chiskis and Parnes
(2000), here there appears no strain measure that depends on the elastic constants.

The linear hyperelastic stress–strain relation (25) was introduced and used by Hencky (1928, 1931, 1933)

about 75 years ago. Later, de Boer (1967), de Boer and Bruhns (1969), Bruhns and Thermann (1969), and

Bruhns (1970, 1971) used Eq. (25) to study finite bending deformations of incompressible and compressible

elastic and elastoplastic plate strips. In recent years, certain remarkable properties of this simple relation

have been uncovered both from experimental grounds by Anand (1979, 1986) and Bruhns et al. (2001a) and

from theoretical grounds relating to the exact integrability of the widely used zeroth-grade hypoelastic

equation with objective stress rates (see, e.g., Xiao et al., 1999, 2000).
In a general respect, it has been shown by Bruhns et al. (1999) and Xiao et al. (2000) that the general

hyperelastic strain–stress relation (21) leads to a simple form of explicit, integrable-exactly rate formulation

of hypoelastic type of the general isotropic finite hyperelasticity, in which the instantaneous tangential

elastic compliance tensor is exactly the twice derivative of the complementary potential eRR, i.e., the Hessian

ðo2eRR=ososÞ. Namely, we have

D ¼ o2eRR
osos

: s
	
log: ð26Þ

In the above, s
	
log is the logarithmic rate of the Kirchhoff stress tensor s, which is an objective co-rotational

rate and introduced in Xiao et al. (1997b). Eq. (26) is just an equivalent Eulerian rate form of the general

hyperelastic strain–stress relation (21). The uniqueness property of this rate form and further properties

have been discussed in Bruhns et al. (1999) and Xiao et al. (2000).

3. Explicit strain–stress relation in terms of the powers sr

Since RðsÞ is isotropic, it is a symmetric function of the three eigenvalues si of s, i.e.,

RðsÞ ¼ wðs1; s2; s3Þ:
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Hence we have 7

oeRR
os

¼
X3
i¼1

ow
osi

ni � ni: ð27Þ

Thus, Eq. (23) has the spectral form

B ¼
X3
i¼1

e2ðow=osiÞni � ni: ð28Þ

The latter yields

ki ¼ eðow=osiÞ: ð29Þ
Sometimes, we need to put Eq. (23) in the usual power form

B ¼ b0I þ b1s þ b2s2; ð30Þ
where the coefficients bs with s ¼ 0, 1, 2 are three symmetric functions of the three eigenvalues si of s.

Usually, it does not appear to be easy to work out such a form, as remarked by Blume (1992) for the

incompressible case. In what follows, from Eq. (28) we shall derive an explicit expression of the form (30).

We shall apply the eigenprojection method suggested in Xiao et al. (1998). Let s1; . . . ; sm be all the m
distinct eigenvalues of s and P1; . . . ;Pm the corresponding subordinate eigenprojections of s. Here,

16m6 3. Then we may recast Eq. (28) as

B ¼
Xm
h¼1

e2ðow=oshÞPh: ð31Þ

In the above expression, the eigenprojection Ph of s subordinate to the eigenvalue sh is uniquely determined

by 8 the Sylvester�s formula (see, e.g., Xiao et al., 1998, Eq. (1.32))

Ph ¼ d1mI þ
Ym

s¼1;s6¼h

s � ssI
sh � ss

: ð32Þ

When m ¼ 1, the continued product in the above is assumed to be zero.

Substituting Eq. (32) into Eq. (31), expressions of the power form (30) may be available for the three

cases m ¼ 1, 2, 3. The results are as follows.

For m ¼ 3, we have Eq. (30) with

b0 ¼ � 1

D
s2s3ðs2



� s3Þe2ðo~RR=os1Þ þ s3s1ðs3 � s1Þe2ðo~RR=os2Þ þ s1s2ðs1 � s2Þe2ðo~RR=os3Þ
�
; ð33Þ

b1 ¼
1

D
ðs22



� s23Þe2ðo
~RR=os1Þ þ ðs23 � s21Þe2ðo

~RR=os2Þ þ ðs21 � s22Þe2ðo
~RR=os3Þ

�
; ð34Þ

b2 ¼ � 1

D
ðs2



� s3Þe2ðo~RR=os1Þ þ ðs3 � s1Þe2ðo~RR=os2Þ þ ðs1 � s2Þe2ðo~RR=os3Þ
�
; ð35Þ

where eRR ¼ wðs1; s2; s3Þ and
D ¼ ðs1 � s2Þðs2 � s3Þðs3 � s1Þ: ð36Þ

7 Note that s and V and hence B are coaxial.
8 To the contrary, the eigenvectors pertaining to an eigenvalue may be non-unique.
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For m ¼ 2, we have

B ¼ s1e2ðo
~RR=os2Þ � s2e2ðo

~RR=os1Þ

s1 � s2
I þ e2ðo

~RR=os1Þ � e2ðo
~RR=os2Þ

s1 � s2
s; ð37Þ

where eRR ¼ wðs1; s2Þ.
For m ¼ 1, we have

B ¼ e2ðo
~RR=osÞI ; ð38Þ

where eRR ¼ wðsÞ and s ¼ sI .
The three eigenvalues si (possibly repeated) of s may be calculated by means of the explicit formula

si ¼
1

3
I1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6I2 � 2I21

q
cos

/ � 2ip
3

�
; i ¼ 1; 2; 3; ð39Þ

with

/ ¼ arc cos
8I31 � 36I1I2 þ 36I3

ð6I2 � 2I21 Þ
3=2

 !
; ð40Þ

where the three Ik ¼ trsk are the three basic invariants of s.
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